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The pure conduction state of a horizontal layer of fluid heated from below 
becomes unstable with respect to a convecting state when the temperature dif- 
ference exceeds a critical value. We examine the question of how real, physical 
systems evolve from conduction to convection. Most experimental cells contain 
geometric or thermal inhomogeneities which render the bifurcation to convec- 
tion imperfect. In that case the pure conduction state never exists and the con- 
veering state evolves continuously and smoothly as the temperature difference is 
raised. When a sufficiently perfect experimental cell is constructed to eliminate 
this route to convection, then dynamic imperfections will usually prevail. When 
the temperature difference across the cell is raised, the vertical gradients in the 
sidewalls evolve at a rate which differs from that in the fluid. The resulting 
transient horizontal thermal gradients initiate the convective flow. This 
phenomenon can be eliminated by providing sidewalls which have the same 
thermal diffusivity as that of the fluid. When that is done, the convective flow is 
started by random noise which exists in any experimental system. Analysis of 
experiments shows that the noise source is considerably stronger than thermal 
noise, but its origin is unclear at this time. 

KEY WORDS: Convection; bifurcations; stochastic effects; imperfect bifur- 
cations; dynamic forcing; static imperfections; attractors; modulation; pattern 
competition. 

In an ideal, laterally infinite horizontal layer of fluid heated from below, an 
exchange of stability between pure conduction and a convecting state 
occurs when the Rayleigh number R is raised above its critical value R c 
(R is proportional to the temperature difference A T  between the top and 
bottom of the layer). (1~ The conducting state remains a solution of the 
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equations of motion, but it is unstable. A finite perturbation of the system 
is thus required if it is to evolve to the stable convecting state in a finite 
time. In this paper we address the question of how a real, physical system 
evolves from conduction to convection. 

Most experimental cells contain geometric or thermal inhomogeneities 
which render the bifurcation at Rc imperfect. These inhomogeneities may, 
for instance, take the form of a nonuniform thickness of the fluid layer, a 
deviation from horizontality, imperfect thermal attachment of the sidewalls 
to the top or bot tom plate, or other sources of horizontal thermal gradients 
near the walls./2) In their presence the pure conduction state does not exist, 
and a finite though perhaps very small velocity field starts to evolve as R 
exceeds zero. A well-known example in the literature is the subcritical 
concentric convection rolls observed by Koschmieder and Pallas ~3~ in a 
fluid layer of circular cross section. Such a cylindrical pattern can be 

Fig. 1. Circular convection patterns stabilized by horizontal temperature gradients near the 
sidewalls. In both cases, e = 0.27. Top: inward-pointing radial temperature gradient. Bottom: 
outward-pointing radial temperature gradient. 
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stabilized by radial temperature gradients, and the range of R over which it 
is stable depends upon the size of those gradients. (4) The top portion of 
Fig. 1 shows a shadowgraph image of such a pattern in the presence of an 
inward-pointing gradient. (5) In that particular case, there are seven pairs of 
rolls along a radius, and the flow at the center is downward (light). The 
pattern in the bottom portion of the figure was created by deliberately 
introducing an outward-pointing thermal gradient before R was raised 
from below to above Re. In that case, there are also seven pairs along the 
radius; but the flow field is reversed and the flow at the center, for instance, 
is upward (dark). 

The type of bifurcation leading to the patterns in Fig. 1 can be 
illustrated by the Landau amplitude equation 

r o ( d A / d t  ) = ~A - A 3 + h (i) 

Here t is the time and A might be thought of as the amplitude of the 
radially-varying velocity field. The control parameter e is equal to R / R  c - 1 

or A T / A  T c -  1. The inhomogeneous term h represents the imperfections. In 
order to adequately describe some particular physical cases, it may of 
course be necessary to assume that h depends upon R, for instance in the 
form h=ho(1  +e).  For  h = 0 ,  the equation has the solution A =0 ,  which 
corresponds to the conducting state. It is stable for r < 0 and unstable for 
e > 0. The stable solutions for e > 0 are A = _+e m, and correspond to the 
two flow fields illustrated in Fig. 1. The solutions to Eq. (1) for h = 0 are 
shown in Fig. 2a. For  h r 0, the bifurcation is altered and imperfect. For 
sufficiently negative e where A is small, one has A = - h / e .  Thus, even wel l  

below the bifurcation point e = 0 of the perfect system there is s o m e  flow, 
and the pure conduction state no longer exists. At e = 0, the amplitude has 
grown to A = h ~/3. The finite value of A at e = 0 corresponds to a finite con- 
vective heat transport proportional to A 2. This is reflected in a "rounding" 
of the Nusselt number N versus e, as reported in some experiments. (6) For  
e > 0, A grows smoothly with increasing e and approaches the solution e 1/2 
of the perfect system, as illustrated in Fig. 2b. The solution corresponding 
to the h = 0 case A = - e m  is no longer connected to the stable solution for 
e <0,  and cannot be reached by quasistatic means. Access to it can be 
gained by appropriate finite perturbations, however. (7) It is connected to 
the unstable branch for positive e, and has formed a saddle node at 
e = 3 ( h / 2 )  2/3, A = - ( h / 2 )  1/3. If the sign of h is changed, the lower branch 
will be accessible from the state at e < 0 and the upper branch will be 
inaccessible by quasistatic means. The two cases h > 0 and h < 0 correspond 
to the positive and negative radial thermal gradients used to form the two 
patterns in Fig. 1. 
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It is possible to build convection cells in which the static forcing effects 
discussed above are virtually eliminated. This is documented by heat trans- 
port measurements which in some cases have shown that the convective 
heat transport I-which is proportional to A 2 in Eq. (1)] contributes less 
than 0.1% to the total heat transport at e = 0. (4,8) In that case the evolving 
pattern may be determined by deterministic forcing effects associated with 
the dynamics of the system. (9 11) These effects often are attributable to 
horizontal thermal gradients near the sidewalls which arise while e changes 
and because the thermal diffusivity of the walls differs from that of the fluid. 
In Eq. (1), they may be represented by writing the field h as h=ho(de/dt). 
In that case, the stationary solutions of Eq. (1) correspond to a perfect 
bifurcation and the dynamic field provides the perturbation which is 
necessary for the system to evolve from the unstable conducting to the con- 
vecting state after e has grown to positive values. This dynamic forcing 
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Fig. 2. Solutions to Eq. (1) with h = 0 (top) and h > 0 (bottom). Solid lines: stable solutions. 
Dashed lines: unstable solutions. 
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effect has been used to create concentric flow patterns in a study of their 
stability r and of wavenumber selection processes. ~4~ Dynamic sidewall 
forcing is illustrated in Fig. 3, which is for a rectangular container. In that 
case the heat current was changed suddenly from below to above its critical 
value. Initially the pattern forms primarily with rolls parallel to the 
sidewalls (top example, t = 10; the time t is in units of the vertical thermal 
diffusion time d2/x). This pattern becomes a transient in the absence 
of forcing, however, and evolves to a stable state after the temperature 
difference (e) ceases to change. The final stable pattern, reached near 
t =  120, has a large proportion of convection rolls terminating perpen- 
dicular to the sidewalls, which is the preferred case in the absence of 
sidewall forcing. (4, 5,12,13 ) 

Since nearly all sidewall materials have thermal diffusivities which dif- 
fer from those of the fluids, it has been quite difficult to eliminate dynamic 
sidewall forcing as the major factor in the pattern-formation process. 

Fig. 3. Evolution of the convection pattern formed in the presence of dynamic sidewall 
forcing in a rectangular container. From top to bottom, the images correspond to times 
t = 1 0 ,  38, 65, 93, 120, and 1160 vertical thermal diffusion times after the temperature 
difference was raised suddenly from below critical to e = 0.56. 

822/54/5-6-2 
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Recently, however, it has been possible nonetheless to reduce the effect to a 
negligible level by two different wall designs. (t4~ One of these involved 
water as the working fluid, and a gel as the sidewall material. The gel was 
95 % water, and thus had nearly the same thermal conductivity and dif- 
fusivity as those of the working fluid. The other utilized a thin, horizontal 
protrusion into the cell at half height along the circumference which 
prevented convection near the solid walls. The effective walls were thus the 
nonconvecting fluid near the actual walls, and had of course the same ther- 
mal properties as the working fluid. When e was raised gradually from 
below to above zero with these walls in place, patterns like that shown in 
the lower half of Fig. 4 evolved. They consisted of many small convective 
cells which apparently were randomly distributed throughout the sample. 
The pattern was qualitatively similar, but irreproducible in detail, in 

Fig. 4. Bottom: an example for a convection pattern which formed when e was raised slowly 
from below to above zero in the absence of significant sidewall forcing. The pattern consists of 
randomly positioned cells, and is irreproducible from one experimental run to the next. Top: 
the different levels of grey show the absolute value of the Fourier transform of the pattern as a 
function of the wave-vector components  kx and ky. The existence of a ring rather than spots 
reflects the random nature of the pattern. 
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successive runs. Thus it appears that the various deterministic dynamic 
and static forcing fields have been reduced to a negligible level and that 
stochastic effects (9'15'~6) control the pattern formation. The random spatial 
distribution of the pattern is reflected in the top portion of Fig. 4, which is 
a representation of the absolute value of the Fourier transform of the pat- 
tern. A regular geometric arrangement of cellular flow would have resulted 
in distinct spots, whereas this pattern yielded an essentially continuous 
ring. There is, however, a characteristic cell size corresponding to the 
radius of the ring. 

Another set of experimental results is shown in Fig. 5. In the bot tom 
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Fig. 5. (Top) emerging patterns and (bottom) data for the convective heat flux jconv, as a 
function of time, resulting from a linear ramp j = Jo + fit with fl = 0.27, for a cell with negligible 
sidewall forcing. The patterns a~t correspond to the points a-d in the bottom graph. 
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half of that figure the convective heat transport j . . . .  = A  2 is given as a 
function of time. Here the total heat current j was ramped linearly in time, 
i.e., J=Jo + fit. The time origin was chosen so that the bifurcation point 

= 0 was passed at t = 0; but noticeable convection did not occure until 
t ~ 1.3. The patterns which evolved are illustrated in the top part of this 
figure. They are labeled a, b, c, d, and correspond to the similarly labeled 
data points in the bottom figure for j . . . .  (t). 

Some general features of the convective onset due to stochastic effects 
can also be described (9) by Eq. (1), with h now a noise source, which for 
simplicitly we will take as white, i.e., 

(h(t) h(t + v))  = 2F%6(~) (2) 

The solution to Eq. (1) with this choice for h is shown as the dashed line in 
Fig. 5, and was able to reproduce the convective heat transport extremely 
well, with only F as an adjustable paramater. However, a deterministic field 
(i.e., a constant h) also yielded a reasonable fit to the heat transport data, 
as shown by the solid line in Fig. 5. Thus, the prime evidence for stochastic 
effects in the convective onset comes from the nature and the 
irreproducibility of the patterns. 

The strength F of the stochastic force necessary to fit the experiment 
turns out to be larger than thermal noise in a Boussinesq system by four 
orders of magnitude. ~9'17~ One might thus conclude that the noise is of 
experimental origin and associated with the particular apparatus; however, 
deliberate large changes in the most obvious experimental noise source had 
no effect upon the results. Thus, at this time we regard the origin of the 
noise in the experiment as an unresolved issue. 

Another experiment (14) which yielded evidence for stochastic effects in 
convective onset involved a time-periodic modulation of e(t) in the form 

e = e o + c5 cos cot 

In this case a pattern would grow in strength and then fade away to the 
point of being unobservable during each cycle. It was found that an initial 
pattern was reproducible from one cycle to the next only if So > ca(g, co). 
For smaller Co, random cellular flow such as that shown in Figs. 4 and 5 
evolved after a few cycles and was irreproducible from one cycle to the 
next. Thus, in the eo versus ~ plane there is a deterministic region So > ea 
and a stochastic region s0 < ca. The dividing line between the two in prac- 
tice is quite sharp. Experimental results for ea(6, 1) are shown in Fig. 6. 
These observations can in part also be described by Eq. (1). In the presence 
of modulation and for So > 0, the fixed-point solutions A = +_gl/2 of the 
unmodulated system become limit cycles, and the unstable solution A = 0 is 
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Fig. 6. The boundary between the deterministic and stochastic regions in the e0 versus 
plane of a Rayleigh-B6nard system under periodic modulat ion in the form R/Rc= 
1 + e0 + ~ cos(cot). For  this case, co = 1. Solid points: experimental results from ref. 14. Solid 
line: estimate from ref. 18 based on the Langevin equation, Eqs. (1) and (2), with a noise 
strength F taken from independent ramping experiments. (14/ 

the separatrix between the attractor basins of these limit cycles. In the 
presence of noise, the system can make transitions from one limit cycle to 
the other at random intervals. These transitions become more frequent as 
eo decreases or 6 increases because the limit cycles of the corresponding 
deterministic system approach the separatrix more closely. Swift and 
Hohenberg (is) have shown recently that the experimental data (14) for e a are 

Fig. 7. An example of pattern competition between concentric rolls near dynamically forcing 
sidewalss and random cellular flow in the cell interior. This pattern was created by time- 
periodic modulation, with co = 2 and 6 = 2.2, and e0 = 0.06. 
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quantitatively consistent with Eq. (1) and a stochastic noise strength F 
equal to that determined from the ramping experiment ~14~ illustrated in 
Fig. 5. Their calculation of ed is shown as the solid line in Fig. 6. The 
agreement with the data clearly is quite good. This consistency between the 
two experiments within the framework of Eq. (1) lends further strength to 
the interpretation of the convective onset as a stochastic effect. 

Finally, we want to emphasize the limitations of Eq. (1) as a model for 
the convective onset. This equation cannot of course explain the spatio- 
temporal complexity which is evident in Figs. 4 and 5. An example even 
more clearly beyond the scope of Eq. (1) is shown in Fig. 7. This figure 
corresponds to a modulation experiment with dynamically forcing 
sidewalls. For the parameters of this run, the deterministic forcing field 
penetrates only partly into the interior of the cell, and produces concentric 
rolls near the walls. In the cell interior the deterministic field is sufficiently 
weak to permit the stochastic field to dominate, thus yielding random 
cellular flow. It would be interesting to simulate this pattern competition, 
as well as the effects illustrated in Fig. 5, with model equations which con- 
tain appropriate gradient terms, such as the Swift-Hohenberg equation. ~16~ 
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